Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response.

نویسندگان

  • Izabela A Chincinska
  • Johannes Liesche
  • Undine Krügel
  • Justyna Michalska
  • Peter Geigenberger
  • Bernhard Grimm
  • Christina Kühn
چکیده

Sucrose (Suc) transporters belong to a large gene family. The physiological role of SUT1 proteins has been intensively investigated in higher plants, whereas that of SUT4 proteins is so far unknown. All three known Suc transporters from potato (Solanum tuberosum), SUT1, SUT2, and SUT4, are colocalized and their RNA levels not only follow a diurnal rhythm, but also oscillate in constant light. Here, we examined the physiological effects of transgenic potato plants on RNA interference (RNAi)-inactivated StSUT4 expression. The phenotype of StSUT4-RNAi plants includes early flowering, higher tuber production, and reduced sensitivity toward light enriched in far-red wavelength (i.e. in canopy shade). Inhibition of StSUT4 led to tuber production of the strict photoperiodic potato subsp. andigena even under noninductive long-day conditions. Accumulation of soluble sugars and Suc efflux from leaves of transgenic plants are modified in StSUT4-RNAi plants, leading to modified Suc levels in sink organs. StSUT4 expression of wild-type plants is induced by gibberellins and ethephon, and external supply of gibberellic acid leads to even more pronounced differences between wild-type and StSUT4-RNAi plants regarding tuber yield and internode elongation, indicating a reciprocal regulation of StSUT4 and gibberellins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production

Several recent publications reported different subcellular localization of the sucrose transporters belonging to the SUT4 subfamily. The physiological function of the SUT4 sucrose transporters requires clarification, because down-regulation of the members of the SUT4 clade had different effects in rice, poplar, and potato. Here, we provide new data for the localization and function of the Solan...

متن کامل

Graft-transmissible induction of potato tuberization by the microRNA miR172.

The photoreceptor phytochrome B (PHYB) and the homeodomain protein BEL5 are involved in the response of potato tuber induction to the photoperiod. However, whether they act in the same tuberization pathway is unknown. Here we show the effect of a microRNA, miR172, on this developmental event. miR172 levels are higher under tuber-inducing short days than under non-inductive long days and are upr...

متن کامل

A critical appraisal of phloem-mobile signals involved in tuber induction

The identification of FLOWERING LOCUS T (FT) and several FT homologs as phloem-mobile proteins that regulate flowering has sparked the search for additional homologs involved in the long-distance regulation of other developmental processes. Given that flowering and tuber induction share regulatory pathways, the quest for long-distance tuberization signals has been further stimulated. Several tu...

متن کامل

Shade Avoidance Components and Pathways in Adult Plants Revealed by Phenotypic Profiling

Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, wh...

متن کامل

Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation

Plants have evolved developmental mechanisms to ensure reproduction when in sub-optimal local environments. The shade-avoidance syndrome is one such mechanism that causes plants to elongate and accelerate flowering. Plants sense shade via the decreased red:far-red (R:FR) ratio that occurs in shade. We explored natural variation in flowering behavior caused by a decrease in the R:FR ratio of Ara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 146 2  شماره 

صفحات  -

تاریخ انتشار 2008